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Abstract 

For wave propagation at low frequencies in a porous medium, the Gassmann-Domenico relations 
are well-established for homogeneous partial saturation by a liquid. They provide the correct 
relations for seismic velocities in terms of constituent bulk and shear moduli, solid and fluid 
densities, porosity and saturation. It has not been possible, however, to invert these relations 
easily to determine porosity and saturation when the seismic velocities are known. Also, the 
state (or distribution) of saturation, i.e., whether or not liquid and gas are homogeneously mixed 
in the pore space, is another important variable for reservoir evaluation. A reliable ability to 
determine the state of saturation from velocity data continues to be problematic. We show how 
transforming seismic compressional and shear wave velocity data to the (p/X, p/X)-plane (where 
X and /.L are the Lame parameters and p is the total density) results in a set of quasi-orthogonal 
coordinates for porosity and liquid saturation that greatly aids in the interpretation of seismic 
data for the physical parameters of most interest. A second transformation of the same data 
then permits isolation of the liquid saturation value, and also provides some direct information 
about the state of saturation. By thus replotting the data in the (X/p, p/p)-plane, inferences 
can be made concerning the degree of patchy (inhomogeneous) versus homogeneous saturation 
that is present in the region of the medium sampled by the data. 

PACS numbers: 43.2O.J, 43.20.G, 43.20.B 

1 Introduction 

In a variety of applied problems, it is important to determine the state of saturation of a porous 
medium from acoustic or seismic measurements. In the oil and gas industry, it is common to use 
amplitude-versus-offset (AVO) processing of seismic reflection data to reach conclusions about 
the presence of gas, oil, and their relative abundances on the opposite sides of a reflecting 
interface underground (e.g., Castagna and Backus’). For environmental applications, we can 
expect to be working in the near surface where sensor geometries other than surface reflection 
surveys become practical. For example, when boreholes are present, it is possible to do crosswell 
seismic tomography, or borehole sonic logging to determine velocities (e.g., Harris et ~1.~). For 
AVO processing the data obtained are the seismic impedances pz)?, and pv, (where p is the 
density, and up, v, are the seismic compressional and shear wave velocities, respectively), which 
arise naturally in reflectance measurements. (In this paper, we will use the term “velocities” 
to refer to measured velocities at seismic, sonic, or ultrasonic frequencies, unless otherwise 
specified.) However, for crosswell, we are more likely to have simply velocity data, i.e., ‘up and 
v, themselves without density information, while, for well-logging, separate measurements of 
the velocities as well as density are possible. Although a great deal of effort has been expended 
on AVO analysis, relatively little has been done to invert the simple velocity data for porosity 
and saturation. It is our purpose to present one method that shows promise for using velocity 
data to obtain porosity and saturation estimates. The key physical idea used here is the fact 
that the Lame parameter X and the density p are the two parameters containing information 
about saturation, while both of these together with shear modulus p contain information about 
porosity (X and ~1 are defined in the next section). These facts are well-known from earlier 
work of Gassmann,” Domenico,4 and many others. (It is well-established that even though the 



Gassmann-Domenico relations are derived for the static case, they have been found to describe 
behavior measured in the field at sonic and seismic frequencies, and, in some cases, even in 
laboratory ultrasonic experiments.) The same facts are used explicitly in AVO analysis,5-7 
but in ways that are significantly different from those to be described here. A major point of 
departure is that the present work allows direct information to be obtained about, not only 
the level of the saturation, but also concerning the state of saturation, i.e., whether the liquid 
and gas present are mixed homogeneously, or are instead physically separated and therefore in 
a state of patchy saturation. 8-13 Another advantage is that this method uses velocity rather 
than amplitude information, and therefore may have less uncertainty and may also require less 
processing for some types of field experiments. 

One of the main points of the analysis to be presented is the purposeful avoidance of the 
well-known complications that arise at high frequencies, due in large part to velocity dispersion 
and attenuation.14-23 Our point of view is that seismic data (as well as most sonic, and some 
ultrasonic data) do not suffer from contamination by the frequency-dependent effects to the 
same degree typically seen for high frequency laboratory measurements. By restricting our 
range of frequencies to those most useful in the field, we anticipate a significant simplification 
of the analysis and therefore an improvement in our ability to provide both simple and robust 
interpretations of field data. We also provide a means of identifying data in need of correction 
for dispersion effects in the Discussion section. 

We introduce the basic physical ideas in the next section. Then we present two new methods 
of displaying the seismic data. One method is used to sort data points into sets that have similar 
physical attributes, such as porosity. Then, the second method is used to identify both the level 
of saturation and the type of saturation, whether homogeneous, patchy, or a combination of 
the two. We show a subset of the large set of data we have examined that confirms these 
conclusions empirically. We then provide some discussion of the results and what we foresee 
as possible future applications of the ideas. Finally, we summarize the accomplishments of the 
paper in the concluding section. 

2 Elastic and Poroelastic Wave Propagation 

For isotropic elastic materials there are two bulk elastic wave speeds,22 compressional vup = 

n--i% dh an s ear U, = m. Here the Lame parameters X and p are the constants that 
appear in Hooke’s law relating stress to strain in an isotropic material. The constant p gives 
the dependence of shear stress on shear strain in the same direction. The constant X gives 
the dependence of compressional or tensional stress on extensional or dilatational strains in 
orthogonal directions. For a porous system with porosity 4 (void volume fraction) in the range 
0 < q5 < 1, the overall density of the rock or sediment is just the volume weighted density given 

by 

P = (1 - 4Ps t 4[SPl t (1 - S)p,], 
where ps, pl, ps are the densities of the constituent solid, liquid and gas, respectively, and 5’ is 
the liquid saturation, i.e. the fraction of liquid-filled void space in the range 0 5 S 5 1 (see 
Domenico4). When liquid and gas are distributed uniformly in all pores and cracks, Gassmann’s 
equations say that, for quasistatic isotropic elasticity and low frequency wave propagation, the 
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shear modulus p will be mechanically independent of the properties of any fluids present in 
the pores, while the overall bulk modulus K z X + ip of the rock or sediment including the 
fluid depends in a known way on porosity and elastic properties of the fluid and dry rock 
or sediment.3 Thus, in the Gassmann model, the Lame parameter X is elastically dependent 
on fluid properties, while p is not. The density p also depends on saturation, as shown in 
equation (1). At low liquid saturations, the fluid bulk modulus is dominated by the gas, and 
therefore the effect of the liquid on X is negligible until full saturation is approached. This 
means that both seismic velocities vup and v, will decrease with increasing fluid saturation4 due 
to the “density effect,” i.e., the only quantity changing is the density, which increases in the 
denominators of both V; and vi. As full saturation is approached, the shear velocity continues 
its downward trend, while the compressional velocity suddenly (over a very narrow range of 
change of saturation) shoots up to its full saturation value. A well-known example of this 
behavior was provided by Murphy. 25 Figure 1 shows how plots of these data will appear in 
several choices of display, with Figure l(a) being one of the more common choices. This is 
the expected (ideal Gassmann-Domenico) behavior of partially saturated porous rocks. The 
Gassmann-Domenico relations hold for frequencies low enough (sonic and below) that the solid 
frame and fluid will move in phase, in response to applied stress or displacement. The fluid 
pressure must be (at least approximately) uniform throughout the rock, from which assumption 
follows the homogeneous saturation requirement. 

3 Predictions of the theory and examples 

3.1 Gassmann-Domenico relations 

Gassmann’s equations3 for fluid substitution state that 

K = K& + 
a2 

((I! - gq/K, + c$/Kf and p = pdT, 

where K, is the bulk modulus of the single solid mineral, I{,&. and p&. are the bulk and shear 
moduli of the drained porous frame, CI = 1 - I<&./K, is the Biot-Willis26 parameter, 4 is 
the porosity, with K and p being the effective bulk and shear moduli of the undrained porous 
medium, that is saturated with a fluid mixture having bulk modulus Kf. For partial saturation 
conditions with homogeneous mixing of liquid and gas, so that all pores contain the same 
relative proportions of liquid and gas, 

l/Q = S/K1 + (1 - S)/lr’,. (3) 

The saturation level of liquid is S, ICI is the bulk modulus of the liquid, and Ii$ is the bulk 
modulus of the gas. When S is small, (3) shows that Kf si Kg, since 1’9 < KI. As S + 1, 
Kf remains close to Kg until S closely approaches unity. Then, Kf changes rapidly (over a 
small range of saturations) from I<‘, to Kl. (Note that the value of li;l may be several orders 
of magnitude larger than I,, as in the case of water and air - 2.25 GPa and 1.45~10~~ GPa, 
respectively.) 

Since p has no mechanical dependence on the fluid saturation, it is clear that all the fluid 
dependence of Ii = X + $p in (2) resides within the Lame parameter X. Other recent work25 
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on layered elastic media indicates that X should be considered as an important independent 
variable for analysis of wave velocities and Gassmann’s results provide some confirmation of 
this deduction. The parameters K (= X + $p) and I<& (= A&. + $&.) can be replaced in (2) 
by X and A&. without changing the validity of the equation. Thus, like K, X will be almost 
constant until the saturation value closely approaches full saturation. 

Now the first problem that arises with field data is that we usually do not know the reason 
why data at two different locations in the earth differ. It could be that the differences are all 
due to the saturation differences we are concentrating on in this paper. Or it could be that 
they are due in part or in whole to differences in the porous solids that contain the fluids. In 
fact, solid differences can easily mask any fluid differences because the range of detectable solid 
mechanical behavior is so much greater than that of the fluids (especially when fractures are 
present). So we need to be able to remove such differences due to solid heterogeneity. A related 
issue concerns differences arising due to porosity changes throughout a system of solids that 
are otherwise homogeneous. One way of doing this would be to sort our data into sets having 
similar porous solid matrix. For simplicity and because of the types of laboratory data sets 
available, we will use porosity here as our material discriminant. 

Considering our three main parameters, X, p, and p, we see that all three depend on porosity, 
but only X and p depend on saturation. Using formulas (l)-(3), we can take partial derivatives of 
each of these expressions first with respect to 4 while holding S contant, and then with respect 
to S while holding 4 constant. For now, we are only interested in trends rather than the exact 
values, and these are displayed in Table 1. The trend for ax/as], > 0 requires the additional 
reminder that, although this term is always positive, its value is often so small that it may be 
treated as zero except in the small range of values close to S = 1. Also, using Hashin-Shtrikman 
bounds28 as a guide, it turns out that it is not possible to make a general statement about the 
sign of ax/&]s, since the result depends on the material constants. (Related differences of 
sign are also observed in the data we show later in this paper, so this ambiguity is definitely 
observable.) 

Assuming that the primary variables are X, p, and p (further justification of this choice 
of primary variables is provided later in the paper), then the two pieces of velocity data we 
have can be used to construct the following ratios: p/X, p/X, and pfp. We will consider first 
of all what happens to these ratios for homogeneous mixing of fluids, and then consider the 
simpler case of ideal patchy saturation, where some pores in the partially saturated medium 
are completely filled with liquid and others are completely dry (or filled with gas). 

3.2 Homogeneous saturation 

For homogeneous saturation, as S varies with fixed porosity, the ratio p/X does not change 
significantly until S -+ 1, at which point X increases dramatically and p/X therefore decreases 
dramatically. Similarly, as S t 1, the only changes in p/X over most of the dynamic range 
of S are in p, which increases with S. Then, when p is almost at its maximum value, X 
increases dramatically, causing the p/X ratio to decrease dramatically. Thus, p/X does not 
change monotonically with S, but first increases a little and then decreases a lot. Comparing 
these two ratios by plotting data in the (P/&p/X)-plane [see Figure l(b) and Figure 21, we see 
that, when data are collected at approximately equal intervals in S, the low saturation points 
will all cluster together with nearly constant p/X and small increases in p/X, but the final 
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steps as S --+ 1 lead to major decreases in both ratios. The resulting plots appear as nearly 
straight lines in this plane. The remaining ratio p/p has the simplest behavior, since p increases 
monotonically in S, and p does not change. So p/p is a monotonically increasing function of S, 
and can therefore be considered a useful proxy of the saturation variable S. [See Figure l(d) 
and Figure 3.1 

Figure 2(a) includes the same sandstone data from Figure 1, along with others. Similar 
data for five limestone samplesrr are plotted in Figure 2b. The straight line correlation of 
the data in this display is clearly reconfirmed by the limestone data. Numerous other ex- 
amples of the correlation have been observed. No examples of appropriate data for partially 
saturated samples with major deviations from this behavior have been observed, although an 
extensive survey of available data sets has been performed for materials including limestones, 
sandstones, granites,30 unconsolidated sands, and some artificial materials such as ceramics and 
glass beads. 27 This straight line correlation is a very robust feature of partial saturation data. 
The mathematical trick that brings about this behavior will now be explained. 

Consider the behavior as 4 increases for fixed S. Two of the parameters (p and p) decrease 
as 4 increases, but at different rates, while the third (A) can have arbitrary variation. (Recall 
that rigorous bounds on the parameters are: 0 5 K < 00, 0 5 p < 00, 0 < p < co, and 
--$p 5 X 5 oo.) To understand the behavior on these plots in Figure 1 as 4 changes, it will 
prove convenient to consider polar coordinates (r,0), defined by 

and 

tan8 = L 
pw2 ’ (5) 

where w is an arbitrary scale factor with dimensions of velocity (chosen so that T is a dimen- 
sionless radial coordinate for plots like those in Figure 1). Now, if in addition we choose w 
to be sufficiently large so that v,/w << 1 for typical values of v, in our data set, then, using 
standard perturbatoin expansions, we have 

and 

(j = tan-l 5 N 5. ( ) 

(6) 

(7) 

Thus, the angle 8 is well approximated by the ratio in (7), which depends only on the shear 
velocity v,. We know the shear velocity is a rather weak function of saturation but a much 
stronger function of porosity. So we see that the angle in these plots is most strongly correlated 
with changes in the porosity. In contrast, the radial position T is principally dependent on the 
ratio p/X, which we have already shown to be a strong function of the saturation S, especially 
in the region close to full liquid saturation. This analysis shows why the plots in Figures l(b) 

5 



and 2 look the way they do and also why we might be inclined to call these quasi-orthogonal 
(polar) plots of saturation and porosity. 

The bulk modulus Kf contains the only S dependence in (2). Thus, for porous materials 
satisfying Gassmann’s homogeneous fluid conditions and for low enough frequencies, the theory 
predicts that, if we use velocity data in a two-dimensional plot with one axis being the saturation 
S and the other being the ratio X/p = (vJv,)~ - 2, then th e results will lie along an essentially 
straight (horizontal) line until the saturation reaches S N 1 (around 95% or higher), where the 
curve formed by the data will quickly rise to the value determined by the velocities at full liquid 
saturation. [See Figure 3(a).] 

3.3 Patchy saturation 

On the other hand, if the porous medium contains gas and liquid mixed in a heterogeneous 
manner, so that patches of the medium hold only gas while other patches hold only liquid, then 
the theory predicts that, depending to some extent on the spatial distribution of the patches, 
the results will deviate overall from Gassmann’s results (although Gassmann’s results will hold 
locally in each individual patch). If we consider the most extreme cases of spatial distribution 
possible, which are laminated regions of alternating liquid saturation and gas saturation, then 
the effective bulk modulus at low frequencies will be determined by an average of the two 
extreme values of (2): K(s=o = K & and li’]s=r. Using saturation as the weighting factor, the 
harmonic mean and the mean are the two well-known extremes of behavior. Of these two, the 
one that differs most from (2) for 0 < S < 1 is the mean. And, because of K’s linear dependence 
on both X and p, and ,X’S independence of S, we therefore have 

x patchy(S) = (1 - s)xd, + s&El* (8) 
So, on our plot, the results for the mean will again lie along a straight line, but now the line 
goes directly from the unsaturated value (S = 0) to the fully saturated value (S = 1). The 
two straight lines described are rigorous results of the theory, and form two sides of a triangle 
that will contain all data for partially saturated systems, regardless of the type of saturation 
present. In general, heterogeneous fluid distribution can produce points anywhere within the 
resulting triangle, but not outside the triangle (within normal experimental error). 

3.4 Chemical effects 

Some deviations from these conclusions can be expected at the lowest saturations. Chemical 
effects, that have not been accounted for in the mechanical analysis, can and often do lead to 
the situation that dry and drained (nearly dry or room dry) samples have somewhat different 
properties. These differences are larger than can be explained by mechanical analyses alone. 
[For example, see Figures 3(a) and 3(b). Take special note of the three lowest saturation values 
in these Figures.] We discuss this point at greater length in the Discussion section. 

3.5 Examples 

Figure 3 shows three examples of the results obtained with this type of plot for two limestones 
and one andesite from laboratory data of Cadoret et al. 13$31*32 Using the interpretations arising 
for our analysis of Gassmann-Domenico partial-saturation theory, we see that Figures 3(a) and 
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(b) indicate homogeneous mixing of liquid and gas, while Figures 3(e) and (f) indicate extremely 
patchy mixing, and Figures 3(c) and (d) h s ow an intermediate state of mixing for the drainage 
data, but more homogeneous mixing for the depressurization data. The Espeil limestone was 
observed to be the most dispersive of all those rocks considered in the data sets of Carodet et 
a1.13,31,32 So this case is a very stringent test of the method. In fact, if we were to plot the 
corresponding data at 500 kHz, we would not find such simple and easily interpreted behavior 
on these plots. Our explanation for this difference is that the dispersion introduces effects not 
accounted for by the simple Gassmann-Domenico theory, and that there is then no reason to 
think that the method should work for such high frequencies. We have found other examples 
where it does work for frequencies higher than one might expect the method to be valid. The 
point is that, if we restrict the range of frequencies considered to 1 kHz or less, the method 
appears to work quite well on most (and perhaps all) samples. (But, at higher frequencies, the 
solid and fluid can move out of phase and other relations developed by Biot14-r6 and others17-23 

apply. > 

4 Discussion 

4.1 Rocks containing more than one mineral 

The analysis presented here has been limited for simplicity to the case of single mineral porous 
rocks. In fact the main parts of the analysis do not change in any significant way if the rock 
has multiple constituents. The well-known result of Brown and Korringa33 states that 

where 1<$ is the unjacketed bulk modulus of the composite solid frame, li’d is the unjacketed 
pore modulus of the composite solid frame, CY = 1 - K&/K, is the appropriate Biot-Willis26 
parameter for this situation, and the remaining parameters have the same significance as in (2). 
The functional dependence of Ksat on the saturation S is clearly the same in both formulas. If 
we were trying to infer properties of the solid from these formulas, then of course (9) would be 
more difficult to interpret. But for our present purposes, we are only trying to infer porosity, 
saturation values, and saturation state. For these physical parameters, the analysis goes through 
without change. 

4.2 On uniqueness of X-diagrams 

Since the possible linear combinations of the elastic bulk and shear moduli (K and p) are infinite, 
it is natural to ask why (or if) X = K - $J is special ? Is there perhaps some other combination 
of these constants that works as well or even better than the choice made here? There are some 
rather esoteric reasons based on recent work27 in the analysis of layered anisotropic elastic 
media that lead us to believe that the choice X is indeed special, but we will not try to describe 
these reasons here. Instead we will point out some general features of the two types of plots 
that make it clear that this choice is generally good, even though others might be equally good 
or even better in special circumstances. First, in the diagram using the (P//J,, X/p)-plane, it is 
easy to see that any plot of data using linear combinations of the form (p/p, (A + cp)/p), where 
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c is any real constant, will have precisely the same information and the display will be identical 
except for a translation of the values along the ordinate by the constant value c. Thus, for 
example taking c = $, plots of (p/p, K/p) will have exactly the same interpretational value as 
those presented here. But, if we now reconsider the data sorting plot for each of these choices, 
we need to analyze plots of the form (p/(X + cp), p/(X -I- cp)). Is there an optimum choice of 
the parameter c that makes the plots as straight as possible whenever the only variable is the 
fluid saturation? It is not hard to see that the class of best choices always lies in the middle 
of the range of values of X/p taken by the data. So setting -c = i(min(A/p) + max(A/p)) 
will always guarantee that there are very large positive and negative values of P./(X + cp), and 
therefore that these data fall reliably ( f i somewhat approximately) along a straight line. But 
the minimum value of X/p has an absolute minimum of -g, based on the physical requirement 
of positivity of K. So c < i is a physical requirement, and since max X/p N +$ is a fairly 
typical value for porous rocks, it is expected that an optimum value of c 2 0 will generally be 
obtained using this criterion. Thus, plots based on bulk modulus K instead of X will not be as 
effective in producing the quasi-orthogonality of porosity and saturation that we have obtained 
in the data sorting style of plotting. We conclude that the choice X is not unique (some other 
choices might be as good for special data sets), but it is nevertheless an especially simple choice 
and is also expected to be quite good for most real data. 

4.3 Interpreting the data point locations 

4.3.1 Data points inside the triangle 

For plots in the (p/p, X/p)-pl ane such as those included in Figure l(d) and Figures 3(b), 3(d), 
and 3(f), some data points lie between the ideal patchy saturation line and the Gassmann 
ideal lower bound. The relative position of the data points may contain information about the 
fluid distribution. Consider the case of a core sample that is nearly saturated, above 90% for 
example. If the weight of the core is used to determine the saturation but the core contains a 
few gas bubbles, the background saturation will be underestimated and the bubbles themselves 
represent patches. This is an example of a material having a few isolated patches contained in an 
otherwise homogeneous partially-saturated background. Such data would plot above but close 
to the Gassmann curve. In an analogous case for field seismic data, the background saturation 
may be known from measurements made at lower frequencies or in a nearby region, and it may 
be possible to use such information to determine the relative volume of patches. For data lying 
in the middle (i.e., between the bounding curves), some assumptions about fluid distribution 
could be made and then various estimates about patchy volumes could be applied to different 
models such as the Hashin-Shtrikman boundsm or effective medium theories. Exploration of 
these issues will be the subject of future work. 

4.3.2 Data points outside the triangle 

The sides of the triangle described above set rigorous boundaries for effects associated with 
homogeneous saturation and patchy saturation at low frequencies or for situations in which 
frequency-dependent dispersion can be neglected. However, when the data do not in fact 
satisfy these assumptions of the theory, plotting the data this way provides an opportunity to 
observe and interpret deviations from the behavior predicted by the theory. For example, data 
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which plot above the patchy saturation line represent excessively stiff rock. One possible cause 
of systematically high stiffness values is frequency-dependent dispersion.14-23 Chemical effects, 
not taken into account in the analysis, might also cause measurements to deviate systematically 
from predicted behavior. For example, adhesive effects associated with chemical reactions 
between pore fluid and solid constituents might cause systematically high values. Another 
consequence of rock water interactions is softening of intragranular cements. In this case, data 
for susceptible rocks would systematically plot below the Gassmann line at low saturations. 
Direct indications from elastic data of rock-water interactions (e.g., see Bonner et ~1.~~) may 
lead to new methods of determining other rock properties controlled by chemical effects, such 
as the tensile strength. 

5 Conclusions 

We have shown that seismic/sonic velocity data can be transformed to polar coordinates that 
have quasi-orthogonal dependence on saturation and porosity. This observation is based on the 
Gassmann-Domenico relations, which are known to be valid at low frequencies. The transforma- 
tion loses its effectiveness at high frequencies whenever dispersion becomes significant, because 
then Biot theory and/or other effects play important roles in determining the velocities. So the 
simple relations between vp, v,, and X, p, p, and 5’ break down. But, the results are, neverthe- 
less, quite encouraging because the predicted relationships seem to work in many cases up to 
frequencies of 1 kHz, and in a few special cases to still higher frequencies. These results present 
a straightforward method for obtaining porosity, saturation, and some information about spa- 
tial distribution of fluid (i.e., patchy versus homogeneous) from compressional and shear wave 
velocity data alone. This method may prove useful for a wide variety of applications, such as 
environmental as well as exploration geophysics. It may also provide new physical insight that 
may suggest new approaches to AVO data analysis. 
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Figure 1: Various methods of plotting 560 Hz Massillon sandstone data of Murphy:25 (a) Com- 
pressional and shear wave velocities as a function of saturation, (b) transform to (p/X, p/X)- 

plane, (4 VP versus saturation, (d) transform to (X/p, p/p)-plane. All of these behaviours are 
anticipated by the Gassmann-Domenico relations for homogeneously mixed fluid in the pores. 
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Figure 2: Examples of the correlation of slopes with porosity: (a) three sandstones,10l25 (b) five 
limestones,13 (c) 11 fused glass-bead samples,2g (d) Westerly granite3’ at four pressures. The 
observed trend is that high porosity samples generally have lower slopes than lower porosities 
on these plots, although there are a few exceptions as discussed in the text. These trends are 
easily understood since the slopes are determined approximately by the average value of wz for 
each material, which is a decreasing function of porosity. 
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Figure 3: Lame parameter ratio X/p plotted versus (a) saturation and (b) p/p for Espeil lime- 
stone, (c) saturation and (d) p/p for Brauvilliers limestone, and (e) saturation and (f) p/p for 
Volvic andesite. All extensional and shear wave measurements13Y31732 were made at 1 kHz. Note 
that (a) and (b) indicate homogeneous mixing of liquid and gas, (e) and (f) indicate extremely 
patchy mixing, while (c) and (d) h s ow an intermediate state of mixing for the drainage data, 
but more homogeneous mixing for the depressurization data. 
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